If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30n-5n^2=0
a = -5; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·(-5)·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*-5}=\frac{-60}{-10} =+6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*-5}=\frac{0}{-10} =0 $
| 5w^2-55w+140=0 | | 12x+24+32=8 | | d+7d=16 | | 20z+45=85 | | c=10101+3563 | | 17a-16a=7 | | 4y+18=6(y+4) | | -24.0=-4.0x | | -10(-12-8x)+3=-197 | | u2-256=0 | | 98-2x²=0 | | -7z-8=-10z+4 | | 2-3*5=7*(5y-3) | | x=3.3+x | | 0.6x-0.2(4-x)=4.4 | | -3(2n+1)=15 | | -22=4(4x+6)+6(8x+3) | | 5x*3-1+2*3=0 | | 1/2(6-w)=w | | 1/26-w)=w | | 4(t+12)−–13=17 | | 3x-7=x-(2x-1) | | 2.50x-15=1x | | 2x-8(4-x)=9 | | Y=-10.5+2.5x | | 15x+8.5=58 | | 90=-3(5+7x) | | 45= 5t+455t+45 | | -6z+13+9z=8z-3 | | 2(x+1)-3(x-5)+4(x+3)=0 | | 15x=5x+2 | | x+1=3(3x-1)-7x |